DELIBERAZIONE DELLA GIUNTA REGIONALE 7 novembre 2022, n. 1522

Acque dolci idonee alla vita dei pesci. Conformità ai sensi del d.lgs. n.152/2006 - Annualità 2020.

L'Assessore con delega alle Risorse Idriche, avv. Raffaele Piemontese, sulla base delle risultanze dell'istruttoria espletata dal Servizio Sistema Idrico Integrato e Tutela delle Acque e confermata dal Dirigente della Sezione Risorse Idriche, riferisce quanto seque.

PREMESSO CHE:

- il d.lgs. n.152/06 recante "Norme in materia ambientale", in adempimento a quanto disposto dalla direttiva 2000/60/CE, persegue la salvaguardia, la tutela e il miglioramento della qualità ambientale delle risorse idriche. A tal fine individua anche gli obiettivi di qualità per le acque a specifica destinazione funzionale che le Regioni sono chiamate a perseguire entro orizzonti temporali ben precisi e sancisce il ruolo fondamentale della pianificazione e del monitoraggio, quali strumenti guida dell'azione di tutela;
- i programmi di monitoraggio delle acque a specifica destinazione funzionale, in conformità all'art. 120 del d.lgs. n.152/2006, costituiscono parte integrante del monitoraggio qualitativo e quantitativo dei Corpi Idrici Superficiali adottato dalle Regioni;
- ai sensi dell'art. 79 del d.lgs. n.152/2006, sono acque a specifica destinazione funzionale:
 - a) le acque dolci superficiali destinate alla produzione di acqua potabile;
 - b) le acque destinate alla balneazione;
 - c) le acque dolci che richiedono protezione e miglioramento per essere idonee alla vita dei pesci;
 - d) le acque destinate alla vita dei molluschi;
- relativamente alle acque dolci che richiedono protezione e miglioramento per essere idonee alla vita dei pesci, ai sensi dell'art. 84 del d.lgs. n.152/2006, le Regioni effettuano preliminarmente la designazione delle stesse, privilegiando i corpi idrici di particolare pregio ambientale, scientifico o naturalistico e, successivamente, provvedono alla classificazione in acque dolci "salmonicole" o "ciprinicole"; la designazione e la classificazione sono sottoposte a revisione in relazione ad elementi imprevisti o sopravvenuti;
- ai sensi dell'art. 85 del d.lgs. n.152/2006, le acque così designate e classificate si considerano idonee alla vita dei pesci se rispondono ai requisiti riportati nella Tabella 1/B dell'Allegato 2 alla parte terza del decreto medesimo; se dai campionamenti risulta che non sono rispettati uno o più valori dei parametri riportati nella succitata Tabella, dovranno essere accertate le cause dell'inosservanza al fine di predisporre le misure appropriate;
- tuttavia, ai sensi dell'art. 86 del d.lgs. n.152/2006, le Regioni possono derogare al rispetto dei parametri riportati nella suddetta Tabella 1/B, in caso di arricchimento naturale del corpo idrico da sostanze provenienti dal suolo senza intervento diretto dell'uomo e, limitatamente ad alcuni parametri indicati nella medesima Tabella, in caso di circostanze meteorologiche eccezionali o speciali condizioni geografiche.

CONSIDERATO CHE:

- la Regione Puglia, in attuazione di quanto previsto dalla normativa vigente, recepita ed aggiornata da ultimo con il d.lgs. n.152/2006, con D.G.R. n. 742/96 ha effettuato la prima designazione delle *acque dolci che richiedono protezione o miglioramento per essere idonee alla vita dei pesci* e con D.G.R. n. 6415 del 05.08.1997 ha classificato le stesse come *"ciprinicole"*;
- la prima designazione è stata poi sottoposta a revisione con successive D.G.R. n. 467 del 23.02.2010 e n. 2904 del 20.12.2012, all'esito delle quali risultano attualmente designati n. 15 siti le cui acque sono

classificate tutte quali "ciprinicole" - sui quali sono allocate 20 stazioni di monitoraggio;

- la Regione Puglia ai sensi dell'art.120 c.2 del d.lgs.152/06 garantisce il monitoraggio annuale delle acque dolci superficiali idonee alla vita dei pesci nell'ambito dei programmi sessennali di monitoraggio dei corpi idrici superficiali, e, in particolare, le attività di monitoraggio di cui al presente provvedimento rientrano nel programma di monitoraggio dei corpi idrici superficiali per il triennio 2019-2021 approvato con deliberazione di Giunta regionale n. 1429 del 30.07.2019 e affidato ad ARPA Puglia in continuità con le annualità pregresse;
- a chiusura dell' annualità 2019, con deliberazioni n. 819 del 24.05.2021, la Giunta regionale ha approvato lo stato di conformità delle acque dolci superficiali idonee alla vita dei pesci;
- le attività di monitoraggio sono regolarmente proseguite nel corso delle annualità 2020 e 2021.

RILEVATO CHE:

- l'ARPA Puglia, a conclusione delle attività di monitoraggio relative all'annualità 2020, con nota prot. n.55500 del 06.08.2021 (acquisita agli atti della Sezione Risorse Idriche con prot. n. AOO_075/9934 del 10.08.2021) ha trasmesso la relazione "Acque dolci superficiali idonee alla Vita dei Pesci Esiti del monitoraggio annualità 2020" allegata quale parte integrante e sostanziale del presente provvedimento (Allegato A), contenente la valutazione delle conformità/non conformità dei singoli parametri per ogni sito stazione, le proposte di deroga previste dall'art. 86 del d.lgs. n.152/2006 e il giudizio complessivo di conformità per ciascun sito-stazione nelle acque designate;
- Arpa Puglia, nella relazione di cui al punto precedente, ha proposto:
 - la deroga, ai sensi dell'art. 86 del d.lgs. n.152/2006:
 - per il parametro "Temperatura", per i siti designati "Foce Ofanto Fiume Ofanto" (VP_FO02)
 e "Salsola ramo nord Torrente Salsola" (VP_SA01), il cui valore misurato nel mese di Luglio è risultato superiore al limite tabellare;
 - per il parametro "*Materiali in Sospensione*" per n. 9 siti stazione; i superamenti di tale parametro sono abbastanza generalizzati nei corsi d'acqua, presumibilmente a causa del loro regime torrentizio, a volte anche intermittente, e di eventi meteorologici intensi, sempre più frequenti negli ultimi anni;
 - il giudizio esperto di conformità per il parametro "Cloro residuo totale" in due siti della provincia di Taranto (Sorgente Chidro e Fiume Lenne) e nel sito Fiume Grande in provincia di Brindisi, dove i valori riscontrati risultano inferiori al limite di quantificazione strumentale, sebbene lo stesso sia superiore al limite di legge, molto restrittivo e non agilmente raggiungibile con le metodiche analitiche in uso ad alcuni dipartimenti provinciali di ARPA. L'analisi della serie storica dei dati (quadriennio 2018-2021), infatti, ha evidenziato che per i siti in esame la percentuale di misure con valori inferiori al LOQ è superiore al 90% e raggiunge il 100% nel caso di Fiume Grande. A supporto di tale assunto, la nota n. 12 alla Tabella 1/B del D.lgs. n. 152/2006 recita, tra le altre cose, che «in ogni caso la concentrazione ammissibile di cloro residuo totale non deve superare il limite di rilevabilità strumentale del metodo di riferimento».
 - la valutazione di conformità globale per ciascun sito-stazione, da cui risulta che il solo sito "Fiume Grande" è conforme, mentre i restanti siti presentano valori di alcuni parametri superiori ai limiti previsti dalla normativa nazionale, comportando la non conformità degli stessi.
 - Le proposte di deroga, la valutazione di conformità globale per ciascun sito-stazione, nonché i parametri determinanti ai fini del giudizio di non conformità sono riepilogati nella **Tabella** allegata quale parte integrante e sostanziale del presente provvedimento (**Allegato B**);

- relativamente alle non conformità, ARPA Puglia conferma che, come per le pregresse annualità, le principali criticità sono legate ai parametri BOD₅, composti dell'ammoniaca e Cloro Residuo Totale indicatori di pressione antropica, ma che, in linea generale, molte delle criticità rilevate possono essere correlabili alla scarsa portata dei corpi idrici che, soprattutto nei mesi estivi, limita l'eventuale effetto diluizione delle sostanze eventualmente immesse nelle acque;
- per l'annualità 2020, inoltre, l'elevato numero di siti che hanno presentato non conformità è stato condizionato anche dal fermo delle attività dovuto alla pandemia, che ha comportato nella maggior parte dei siti, una frequenza di campionamento inferiore ad un prelievo al mese, richiedendo il rispetto dei limiti tabellari nel 100% dei campioni prelevati e non più nel 95%.

RILEVATO ALTRESÌ CHE:

- nell'ambito dell'aggiornamento del Piano di Tutela delle Acque, tutt'ora in corso e da ultimo adottato con D.G.R. n. 1333 del 16.07.2019, la Regione Puglia ha individuato apposita misura "Gestione e sviluppo dei dispositivi di monitoraggio per acque idonee alla vita pesci e acque a specifica destinazione", con lo scopo di promuovere campagne di indagine per valutare la sussistenza delle condizioni quantitative dei corsi d'acqua idonee alla vita dei pesci;
- sono in corso le attività del "Piano di Monitoraggio Idromorfologico per le categorie Corsi d'Acqua e Invasi" approvato con D.G.R. n.2382 del 21.12.2018, che, prevede, tra l'altro, specifiche campagne di monitoraggio della fauna ittica, i cui esiti, congiuntamente alle valutazioni complessive delle condizioni idromorfologiche dei corsi d'acqua forniranno gli strumenti necessari alla verifica dell'idoneità degli alvei alle funzioni vitali dei pesci;
- la Sezione Risorse Idriche ha in corso un'attività di confronto e approfondimento con ARPA Puglia (da ultimo con nota prot. AOO/075-9119 del 15.09.2022) al fine di individuare le possibili cause delle mancate conformità e conseguentemente i possibili interventi da mettere in atto per la tutela della specifica destinazione d'uso, anche in relazione agli esiti delle attività di indagine idromorfologica di cui sopra.

RITENUTO NECESSARIO sottoporre alle determinazioni della Giunta Regionale gli esiti del monitoraggio delle acque dolci idonee alla vita dei pesci per l'annualità 2020 – come risultanti dalla relazione "Acque dolci superficiali idonee alla Vita dei Pesci - Esiti del monitoraggio - annualità 2020" (Allegato A), nonché i conseguenti giudizi di conformità globale, sintetizzati in Tabella (Allegato B), entrambi allegati quale parte integrante e sostanziale del presente provvedimento, anche al fine di consentire il successivo trasferimento di dati tramite upload sul SINTAI - Sistema Informativo Nazionale per la Tutela delle Acque Italiane - a cura del Punto Focale Regionale.

VERIFICA AI SENSI DEL D.LGS. n. 196/2003 E DEL REGOLAMENTO UE n. 679/2016 Garanzie alla riservatezza

La pubblicazione sul BURP, nonché la pubblicazione all'Albo o sul sito istituzionale, salve le garanzie previste dalla legge 241/1990 in tema di accesso ai documenti amministrativi, avviene nel rispetto della tutela della riservatezza dei cittadini secondo quanto disposto dal Regolamento UE n. 679/2016 in materia di protezione dei dati personali, nonché dal D.Lgs. 196/2003 ss. mm. ii., ed ai sensi del vigente Regolamento regionale 5/2006 per il trattamento dei dati sensibili e giudiziari, in quanto applicabile.

Ai fini della pubblicità legale, il presente provvedimento è stato redatto in modo da evitare la diffusione di dati personali identificativi non necessari ovvero il riferimento alle particolari categorie di dati previste dagli articoli 9 e 10 del succitato Regolamento UE.

SEZIONE COPERTURA FINANZIARIA DI CUI AL D. Lgs. n. 118/2011 e ss. mm. e ii.

La presente Deliberazione non comporta implicazioni, dirette e/o indirette, di natura economico - finanziaria e/o patrimoniale e dalla stessa non deriva alcun onere a carico del Bilancio Regionale.

L'Assessore con delega alle Risorse Idriche, sulla base delle risultanze istruttorie come innanzi illustrate, ai sensi dell'art.4, comma 4, k) della L.R. n. 7/1997 che detta "Norme in materia di organizzazione dell'Amministrazione Regionale" propone alla Giunta:

- **1. DI PRENDERE ATTO** di tutto quanto espresso in premessa ed in particolare:
 - a) che a conclusione dell'attività di monitoraggio delle acque superficiali dolci idonee alla vita dei pesci per l'annualità 2020, l'ARPA Puglia, con nota prot. n.55500 del 06.08.2021 (acquisita agli atti della Sezione Risorse Idriche con prot. n. AOO_075/9934 del 10.08.2021) ha trasmesso la relazione "Acque dolci superficiali idonee alla Vita dei Pesci Esiti del monitoraggio annualità 2020" allegata quale parte integrante e sostanziale del presente provvedimento (Allegato A), contenente la valutazione delle conformità/non conformità dei singoli parametri per ogni sito stazione, le proposte di deroga previste dall'art. 86 del d.lgs. 152/2006 e il giudizio complessivo di conformità per ciascun sito-stazione nelle acque designate;
 - b) che l'Arpa Puglia ha proposto la deroga, ai sensi dell'art. 86 del d.lgs. 152/2006, per il parametro "Temperatura", per i siti designati "Foce Ofanto Fiume Ofanto" (VP_FO02) e "Salsola ramo nord Torrente Salsola" (VP_SA01) e per il parametro "Materiali in Sospensione" per n. 9 siti stazione, nonché i giudizi di conformità/non conformità dei siti ricadenti nelle acque dolci superficiali idonee alla vita dei pesci, come restituiti nella Tabella allegata quale parte integrante e sostanziale del presente provvedimento (Allegato B), nella quale sono altresì riportati i parametri determinanti ai fini del giudizio di non conformità.
- 2. DI AUTORIZZARE la deroga, ai sensi dell'art. 86 del d. lgs. 152/2006, al parametro "Temperatura", per i siti designati "Foce Ofanto Fiume Ofanto" (VP_FO02) e "Salsola ramo nord Torrente Salsola" (VP_SA01) e per il parametro "Materiali in Sospensione" per n. 9 siti stazione, come proposto da Arpa Puglia e riepilogato nella Tabella allegata quale parte integrante e sostanziale del presente provvedimento (Allegato B).
- 3. DI APPROVARE i giudizi di conformità/non conformità globale dei siti ricadenti nelle acque dolci idonee alla vita dei pesci, proposti da Arpa Puglia nella relazione di cui al punto 1.a e riepilogati nella Tabella, allegata quale parte integrante e sostanziale del presente provvedimento (Allegato B).
- 4. DI PRENDERE ATTO che nell'ambito dell'aggiornamento del Piano di Tutela delle Acque adottato, sono state individuate le misure necessarie a valutare la sussistenza delle condizioni quantitative dei corsi d'acqua idonee alla vita dei pesci e che eventuali misure integrative potranno essere individuate all'esito degli approfondimenti attualmente in corso sulle specifiche problematiche emerse nel corso dell'attività di monitoraggio.
- **5. DI DISPORRE** la pubblicazione del presente atto sul Bollettino Ufficiale della Regione Puglia e sul sito internet regionale.
- **6. DI TRASMETTERE**, a cura della Sezione Risorse Idriche, copia del presente provvedimento all'ARPA Puglia, in qualità di Punto Focale Regionale, per il successivo trasferimento di dati tramite upload sul SINTAI Sistema Informativo Nazionale per la Tutela delle Acque Italiane.

I sottoscritti attestano che il procedimento istruttorio è stato espletato nel rispetto della vigente normativa

regionale, nazionale ed europea e che il presente schema di provvedimento, predisposto ai fini dell'adozione dell'atto finale da parte della Giunta Regionale, è conforme alle risultanze istruttorie.

Il funzionario istruttore

dott.ssa Daniela PAGLIARULO

La PO

"Monitoraggio corpi idrici e analisi, controllo e gestione indicatori di qualità" arch. Rosangela COLUCCI

Il Dirigente della Sezione Risorse Idriche

Ing. Andrea ZOTTI

Il sottoscritto Direttore di Dipartimento **non ravvisa** la necessità di esprimere sulla proposta di delibera osservazioni ai sensi del combinato disposto degli articoli 18 e 20 del DPGR n. 22/2021.

Il Direttore del Dipartimento Bilancio, Affari Generali e Infrastrutture

dott. Angelosante ALBANESE

L'Assessore con delega alle Risorse Idriche

avv. Raffaele PIEMONTESE

LA GIUNTA

Udita la relazione e la conseguente proposta dell'Assessore con delega alle Risorse Idriche;

Viste le sottoscrizioni poste in calce alla proposta di deliberazione;

A voti unanimi, espressi nei modi di legge

DELIBERA

1. DI PRENDERE ATTO di tutto quanto espresso in premessa ed in particolare:

- a) che a conclusione dell'attività di monitoraggio delle acque superficiali dolci idonee alla vita dei pesci per l'annualità 2020, l'ARPA Puglia, con nota prot. n.55500 del 06.08.2021 (acquisita agli atti della Sezione Risorse Idriche con prot. n. AOO_075/9934 del 10.08.2021) ha trasmesso la relazione "Acque dolci superficiali idonee alla Vita dei Pesci Esiti del monitoraggio annualità 2020" allegata quale parte integrante e sostanziale del presente provvedimento (Allegato A), contenente la valutazione delle conformità/non conformità dei singoli parametri per ogni sito stazione, le proposte di deroga previste dall'art. 86 del d. lgs. 152/2006 e il giudizio complessivo di conformità per ciascun sito-stazione nelle acque designate;
- b) che l'Arpa Puglia ha proposto la deroga, ai sensi dell'art. 86 del d. lgs. 152/2006, per il parametro

"Temperatura", per i siti designati "Foce Ofanto – Fiume Ofanto" (VP_FO02) e "Salsola ramo nord - Torrente Salsola" (VP_SA01) e per il parametro "Materiali in Sospensione" per n. 9 siti – stazione, nonché i giudizi di conformità/non conformità dei siti ricadenti nelle acque dolci superficiali idonee alla vita dei pesci, come restituiti nella Tabella allegata quale parte integrante e sostanziale del presente provvedimento (Allegato B), nella quale sono altresì riportati i parametri determinanti ai fini del giudizio di non conformità.

- 2. DI AUTORIZZARE la deroga, ai sensi dell'art. 86 del d. lgs. 152/2006, al parametro "Temperatura", per i siti designati "Foce Ofanto Fiume Ofanto" (VP_FO02) e "Salsola ramo nord Torrente Salsola" (VP_SA01) e per il parametro "Materiali in Sospensione" per n. 9 siti stazione, come proposto da Arpa Puglia e riepilogato nella Tabella allegata quale parte integrante e sostanziale del presente provvedimento (Allegato B).
- 3. DI APPROVARE i giudizi di conformità/non conformità globale dei siti ricadenti nelle acque dolci idonee alla vita dei pesci, proposti da Arpa Puglia nella relazione di cui al punto 1.a e riepilogati nella Tabella, allegata quale parte integrante e sostanziale del presente provvedimento (Allegato B).
- **4. DI PRENDERE ATTO** che nell'ambito dell'aggiornamento del Piano di Tutela delle Acque adottato, sono state individuate le misure necessarie a valutare la sussistenza delle condizioni quantitative dei corsi d'acqua idonee alla vita dei pesci e che eventuali misure integrative potranno essere individuate all'esito degli approfondimenti attualmente in corso sulle specifiche problematiche emerse nel corso dell'attività di monitoraggio.
- **5. DI DISPORRE** la pubblicazione del presente atto sul Bollettino Ufficiale della Regione Puglia e sul sito internet regionale.
- **6. DI TRASMETTERE**, a cura della Sezione Risorse Idriche, copia del presente provvedimento all'ARPA Puglia, in qualità di Punto Focale Regionale, per il successivo trasferimento di dati tramite upload sul SINTAI Sistema Informativo Nazionale per la Tutela delle Acque Italiane.

IL SEGRETARIO GENERALE DELLA GIUNTA
ANNA LOBOSCO

IL PRESIDENTE DELLA GIUNTA RAFFAELE PIEMONTESE

ALLEGATO A

SERVIZIO DI MONITORAGGIO DEI CORPI IDRICI SUPERFICIALI DELLA REGIONE PUGLIA

Monitoraggio qualitativo dei corpi idrici superficiali per il triennio 2019-2021

La Rete di monitoraggio per le acque a specifica destinazione Acque dolci superficiali idonee alla Vita dei Pesci

Esiti del monitoraggio - annualità 2020

-agosto 2021-

Acque dolci superficiali idonee alla Vita dei Pesci Esiti del monitoraggio annualità 2020

A cura di:

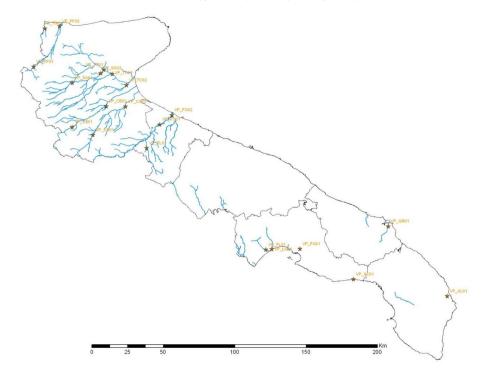
ARPA Puglia - UOC Ambienti Naturali Nicola Ungaro Erminia Sgaramella Caterina Rotolo

con il contributo dei Dipartimenti Provinciali di ARPA Puglia, Territorio e Laboratorio

I siti designati

Con la Deliberazione di Giunta Regionale n. 467 del 23 febbraio 2010 la Regione Puglia ha ridesignato le acque dolci che richiedono protezione o miglioramento per essere idonee alla vita dei pesci, aggiornando la prima designazione effettuata nel 1997.

Con Deliberazione della Giunta Regionale n. 2904 del 20 dicembre 2012, le acque idonee sono state ulteriormente revisionate, con l'eliminazione dall'elenco delle aree designate del sito "2-BA, Torrente Locone", a causa dei prolungati periodi di secca che lo rendono inidoneo ad ospitare comunità ittiche stabili.


Allo stato attuale, dunque, risultano destinate a tale specifico uso n. **15 acque**, classificate tutte quali "ciprinicole", allocate in 20 (17 + 3) differenti corpi idrici superficiali, così come definiti dalle D.G.R. n. 774 del 23/03/2010 e n. 2844 del 20/12/2010.

DGR n	esignati . 467 del 23/02/2010 . 2904 del 20/12/2012	Codice stazione	Corpo Idrico Superficiale Regione Puglia	LAT (gradi, minuti, secondi-millesimi)	LONG (gradi, minuti, secondi-millesimi)
1-BA	Fiume Ofanto	VP_FO01	confl. Locone - confl. Foce Ofanto	41°17' 9,541" N	16°6' 1,444" E
I-DA	riume Oranto	VP_FO02	Foce Ofanto	41° 20' 26,790"N	16° 12' 20,740"E
2-BR	Fiume Grande	VP_GR01	F. Grande	40°37' 29,151" N	17°58' 59,854" E
1-FG	Fiume Fortore	VP_FF01	Fortore_12_1	41°38' 50,057" N	15°2' 40,647" E
1-FG	riume rortore	VP_FF02	Fortore_12_2	41°53' 46,823" N	15°15' 50,170" E
2-FG	Torrente Saccione	VP_TS01	Saccione_12	41°51' 36,2" N	15°07'24" E
3-FG	Stagno Daunia Risi	VP_TC03	Candelaro confl. Celone - foce	41°35' 58,889" N	15°42' 18,255" E
4-FG	II vasca Candelaro	VP_TC02	Canale della Contessa	41°31' 50,395" N	15°49' 23,933" E
5-FG	Torrente Candelaro	VP_TC01	Candelaro confl. Triolo confl. Salsola_17	41°37' 34,269" N	15°38' 7,124" E
c	Tamanta Calcala	VP_SA01	Salsola ramo nord	41°32' 49,497" N	15°22' 7,430" E
6-FG	Torrente Salsola	VP_SA02	Salsola confl. Candelaro	41°36' 20,636" N	15°36' 36,453" E
0.50	T	VP_CE01	Cervaro_18	41°16' 29,937" N	15°22' 0,265" E
8-FG	Torrente Cervaro	VP_CE02	Cervaro_16_1	41°24' 4,094" N	15°39' 8,683" E
		VP_CA01	Carapelle_18_Carapellotto	41°13′31,226″ N	15°32' 27,011" E
9-FG	Torrente Carapelle	VP_CA02	confl. Carapellotto - foce Carapelle	41°23' 51,370" N	15°48' 51,210" E
2-LE	Laghi Alimini – Fontanelle	VP_AL01	N.I.*	40°10' 52,067" N	18°26' 51,616" E
1-TA	Sorgente Chidro	VP_SC01	N.I.*	40°18'18,7'' N	17°40' 57,8"E.
2-TA	Fiume Galeso	VP_FG01	N.I.*	40°30' 6,969" N	17°14' 47,363" E
3-TA	Fiume Lenne	VP_LN01	Lenne	40°30'18,4" N	17° 00'52,1" E
4-TA	Fiume Lato	VP_FL01	Lato	40°30' 8.9" N	16° 57'52,6" E

^{*}N.I.: non individuato dalla Regione Puglia come Corpo Idrico Superficiale ai sensi del D.M. 131/2008

Localizzazione delle stazioni di monitoraggio ARPA per le acque designate quali idonee alla Vita dei Pesci

La normativa di riferimento

La Sezione B dell'Allegato 2 alla Parte III del D.Lgs. 152/2006 prevede - al punto 1) - che le acque dolci designate e classificate si considerano idonee alla vita dei pesci quando i relativi campioni, prelevati con la frequenza minima riportata nella Tab. 1/B, nello stesso punto di prelevamento e per un periodo di dodici mesi, presentino valori dei parametri di qualità conformi ai limiti imperativi indicati nella citata tabella e alle relative "Note esplicative", per quanto riguarda:

- a) il 95% dei campioni*, per i parametri:
 - pH**
 - BOD₅
 - ammoniaca indissociata
 - ammoniaca totale
 - nitriti
 - cloro residuo totale
 - zinco totale
 - rame disciolto
- * Quando la frequenza di campionamento è inferiore a un prelievo al mese, i valori devono essere conformi ai limiti tabellari nel 100% dei campioni prelevati;
- b) i valori indicati nella Tab. 1/B per i parametri:
 - temperatura**

ossigeno disciolto

c) la concentrazione media fissata per il parametro:

materiali in sospensione**

**Per tali parametri sono possibili deroghe in base all'art. 86 del D.lgs. 152/2006, di seguito riportato: "Per le acque dolci superficiali designate o classificate per essere idonee alla vita dei pesci, le regioni possono derogare al rispetto dei parametri indicati nella Tabella 1/B [...], in caso di circostanze meteorologiche eccezionali o speciali condizioni geografiche e, quanto al rispetto dei parametri riportati nella medesima Tabella, in caso di arricchimento naturale del corpo idrico da sostanze provenienti dal suolo senza intervento diretto dell'uomo".

Al punto 2) sono riportate indicazioni relativamente al Campionamento, ai fini dell'accertamento della conformità:

- a) la frequenza dei campionamenti stabilita nella tabella 1/B può essere ridotta ove risulti accertato che la qualità delle acque è sensibilmente migliore di quella riscontrabile, per i singoli parametri, dall'applicazione delle percentuali di cui al punto 1;
- b) possono essere esentate dal campionamento periodico le acque per le quali risulti accertato che non esistono cause di inquinamento o rischio di deterioramento.

Analisi, risultati e conformità

Le attività di controllo sulle acque destinate alla vita dei pesci sono incluse nell'ambito del più vasto Programma di Monitoraggio dei Corpi Idrici Superficiali, di cui costituiscono parte integrante, così come previsto dai D.M. 56/2009 e 260/2010.

Anche per l'annualità 2020, ARPA Puglia ha monitorato le acque destinate alla vita delle specie ciprinicole nei 20 punti-stazione elencati nella tabella precedente. I risultati del monitoraggio hanno permesso di valutare la conformità, rispetto ai limiti imposti dalla norma, per i siti-stazione nelle acque designate dalla Regione Puglia.

Nella tabella che segue si riporta, per ciascun sito, il giudizio di conformità globale e quello relativo ai singoli parametri, oltre alla proposta di deroga nei casi previsti dall'art. 86 del D.Lgs. 152/2006.

Le proposte di deroga ai sensi dell'art. 86 si riferiscono ai parametri "Temperatura" e "Materiali in sospensione":

- per la Temperatura, si propone la deroga per i valori misurati nei siti "Foce Ofanto Fiume Ofanto" (VP_FO02) e "Salsola ramo nord Torrente Salsola" (VP_SA01) nel mese di luglio, risultati superiori al limite tabellare.
- per i Materiali in Sospensione, si propone la deroga in n. 9 siti; i superamenti del parametro sono abbastanza generalizzati nelle acque dei corsi d'acqua, presumibilmente a causa del regime torrentizio, a volte anche intermittente, e di eventi metereologici intensi, sempre più frequenti negli ultimi anni.

Ancora nel 2020 persistono delle criticità legate alla determinazione del parametro "Cloro residuo totale", per il quale la norma fissa un valore limite imperativo molto restrittivo, non agilmente raggiungibile con le metodiche analitiche solitamente in uso. Dato il perdurare delle difficoltà tecniche e viste le interlocuzioni in corso sulla problematica, si propone, per l'annualità in esame, di superare la posizione conservativa che in passato ha comportato l'assegnazione di un giudizio di non conformità di tipo cautelativo; tale scelta ha riguardato tre siti (1 della provincia di Brindisi e 2 in provincia di Taranto), per i quali il parametro in esame è stato valutato per il 2020 "conforme, sebbene il limite di quantificazione delle metodiche analitiche risulti superiore al limite di legge".

Verifica della conformità per le acque dolci destinate alla vita dei pesci ciprinicoli e proposta di deroghe. Annualità 2020.

Direzione Scientifica UOC Ambienti Naturali

	Rame		U	O O	U U U	0000	00000	00000	000000	000000	0000000	00000000	000000000	0000000000	000000000000	0000000000000	00000000000000	0000000000000			
_	o uo Zinco le	C		<u>၂</u>																	
	cloro iaca residuo totale	NC	2	2	ຶ	S S	S C C NC	N C N N N N N N N N N N N N N N N N N N													
	ica Ammoniaca totale	C	U		C	UU	U U U	0000	O O O O												
	Ammoniaca i non ionizzata	O	C		C	UU	U U	0000	U U U U N		0 0 0 0 0 0		N N N N N N N N N N N N N N N N N N N	N N N N N N N N N			N C C C C C C C C C C C C C C C C C C C				
	Nitriti	C	C		ပ																
	ali BODs	NC	NC		C	o S	O NC	U U U	O O O O	O O O O O O		N N N N N N	N N N N N N N N N N N N N N N N N N N								
	Materiali in sosp.	*	C		C	υ <u>*</u>	U * * * * * * * * * * * * * * * * * * *	* * *	u	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>						
	Н	C	C		ပ	υU	UUU	U U U U	0000	00000	000000	0000000									
	Ossigeno	C	ပ		C	υ U	UUU	UUUU	0000	00000	0 0 0 0 0 <mark>9</mark>		U U U U U U U U	00000000000		000000000000	0000000000000000	000000000000000	0 0 0 0 0 <mark>2</mark> 0 0 0 0 0 0	00000000000000000	00000000000000000
	Temperatura	ပ	*ა	ن)	U) U U	0000	0000	00000			000000000	000000000000000000000000000000000000000	00000000000	0000000000000		0 0 0 0 0 <mark>t</mark> 0 0 0 0 0	0 0 0 0 0 <mark>5</mark> 0 0 0 0 0 0	0 0 0 0 0 <mark>5</mark> 0 0 0 0 0 0 0	0 0 0 0 0 <mark>5</mark> 0 0 0 0 0 0 0 0
	Giudizio di conformità	non conforme	non conforme	· · · · · · · · · · · · · · · · · · ·	COLLOTINE	non conforme	non conforme	non conforme non conforme non conforme	non conforme non conforme non conforme non conforme	non conforme non conforme non conforme non conforme non conforme	non conforme non conforme non conforme non conforme non conforme non conforme	non conforme	non conforme	non conforme	non conforme	non conforme	non conforme	non conforme	non conforme	non conforme	non conforme
	Codice stazione	VP_FO01	VP_F002	VP_GR01		VP_FF01	VP_FF01 VP_FF02	VP_FF01 VP_FF02 VP_TS01	VP_FF01 VP_FF02 VP_TS01 VP_TC03	VP_FF01 VP_FF02 VP_TC03 VP_TC03	VP_FF01 VP_TS01 VP_TC03 VP_TC03 VP_TC02	VP_FF01 VP_TS01 VP_TC03 VP_TC02 VP_TC02 VP_TC01 VP_TC01 VP_TC01	VP_FF01 VP_FF02 VP_TC03 VP_TC03 VP_TC02 VP_TC01 VP_SA01 VP_SA02	VP_FF01 VP_TS01 VP_TC03 VP_TC02 VP_TC01 VP_SA01 VP_SA02 VP_SA01 VP_SA02 VP_SA02	VP_FF01 VP_TF02 VP_TC03 VP_TC02 VP_TC01 VP_SA01 VP_SA02 VP_CE01 VP_CE01	VP_FF01 VP_TF02 VP_TC03 VP_TC03 VP_TC01 VP_SA01 VP_SA01 VP_SA02 VP_CE01 VP_CE01 VP_CA01	VP_FF01 VP_FF02 VP_TC03 VP_TC03 VP_TC01 VP_SA01 VP_SA01 VP_SA02 VP_CE01 VP_CE01 VP_CA02	VP_FF01 VP_TF02 VP_TC03 VP_TC03 VP_TC01 VP_SA01 VP_SA01 VP_CE01 VP_CE01 VP_CA02 VP_CA02 VP_CA02	VP_FF01 VP_TC03 VP_TC03 VP_TC03 VP_TC01 VP_SA01 VP_SA01 VP_SA02 VP_CE01 VP_CE01 VP_CE01 VP_CA02 VP_CA02 VP_CA01	VP_FF01 VP_TG03 VP_TC03 VP_TC03 VP_TC01 VP_SA01 VP_SA02 VP_CE01 VP_CE01 VP_CA01 VP_CA01 VP_CA02 VP_CA01 VP_CA02 VP_CA01 VP_CA02 VP_CA01 VP_CA02 VP_CA01 VP_CA01	VP_FF01 VP_TC03 VP_TC03 VP_TC02 VP_TC01 VP_SA01 VP_SA02 VP_CE01 VP_CE01 VP_CA01
	Siti Designati	Fiume Ofanto	Fiume Ofanto	Fiume Grande		Fiume Fortore	Fiume Fortore Fiume Fortore	Fiume Fortore Fiume Fortore Torrente Saccione	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Salsola	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Salsola	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Salsola Torrente Salsola Torrente Cervaro	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Salsola Torrente Salsola Torrente Cervaro Torrente Cervaro	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Salsola Torrente Salsola Torrente Cervaro Torrente Cervaro Torrente Cervaro Torrente Cervaro	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Salsola Torrente Salsola Torrente Cervaro Torrente Cervaro Torrente Cervaro Torrente Carapelle Torrente Carapelle	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Salsola Torrente Salsola Torrente Cervaro Torrente Cervaro Torrente Cervaro Torrente Carapelle Torrente Carapelle Laghi Alimini -	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Salsola Torrente Salsola Torrente Cervaro Torrente Cervaro Torrente Carapelle Torrente Carapelle Torrente Carapelle Torrente Carapelle Torrente Carapelle Sorgente Chidro	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Salsola Torrente Carvaro Torrente Cervaro Torrente Carapelle Torrente Carapelle Torrente Carapelle Laghi Alimini - Fontanelle Sorgente Chidro Fiume Galeso	Fiume Fortore Fiume Fortore Torrente Saccione Stagno Daunia Risi Il vasca Candelaro Torrente Candelaro Torrente Candelaro Torrente Carvaro Torrente Cervaro Torrente Cervaro Torrente Carapelle Torrente Carapelle Torrente Carapelle Laghi Alimini - Fontanelle Sorgente Chidro Fiume Galeso Fiume Galeso
		1 0 4		2-BR			1-FG														

Proposta di deroghe

Deroga ai parametri come previsto dall'art. 86 del D.Lgs. 152/2006, a causa di circostanze meteorologiche eccezionali o speciali condizioni geografiche ڻ

Conforme sebbene il limite di quantificazione delle metodiche analitiche risulti superiore al limite di legge

Non Conforme

S ပ

Conforme

Legenda

Nell'annualità 2020, dunque, risulta idoneo alla vita dei pesci il solo sito "Fiume Grande". Dei 19 siti non conformi, 4 punti-stazione presentano non conformità di un parametro, i restanti come da tabella seguente:

Esiti della valuta	zione	Num. siti	%
Conforme		1	5%
Non conforme	1	4	20%
per numero di	2	5	25%
parametri	3	4	20%
	4	5	25%
	5	1	5%
		20	100%

È opportuno precisare che, a causa dal fermo delle attività imposto dalla pandemia da SARS-CoV-2, in più della metà dei siti la frequenza di campionamento è stata inferiore ad un prelievo al mese, comportando il rispetto dei limiti tabellari nel 100% dei campioni prelevati. Ciò ha determinato un elevato numero di siti che hanno presentato non conformità in riferimento ai parametri "BOD₅", "Ammoniaca non ionizzata", "Ammoniaca totale" e "Cloro residuo totale".

Il BOD₅, indicatore di pressione antropica legato alla possibile presenza di scarichi di acque reflue di diversa natura, ha presentato superamenti nell'80% dei siti (16 su 20), tra cui il sito "Laghi Alimini - Fontanelle" per il quale tale parametro è l'unico non conforme.

I superamenti dei **composti dell'ammoniaca**, presumibilmente legati ad apporti di natura antropica (tra cui acque di scarico) e all'utilizzo di sostanze chimiche come fertilizzanti agricoli, sono stati rinvenuti in tutti i siti della provincia di Taranto e in 6 siti della provincia di Foggia.

Il Cloro residuo totale, indicatore di pressione antropica legato anche al trattamento depurativo delle acque reflue, è stato misurato in concentrazioni superiori ai limiti nell'80% dei siti.

Si ribadisce che, in generale, molte delle criticità rilevate siano presumibilmente da mettere in relazione alla scarsa portata dei corpi idrici che, soprattutto nei mesi estivi, limita l'eventuale effetto diluizione nei confronti delle sostanze eventualmente immesse nelle acque.

I restanti parametri previsti dalla norma non presentano criticità: in particolare, anche nell'annualità in esame non è stato rilevato alcun superamento degli otto metalli previsti dalla Tab. 1/B (zinco, rame, arsenico, cadmio totale, cromo, mercurio totale, nichel e piombo).

Per maggiori dettagli sui singoli parametri e sulle misure, si vedano i dati allegati alla presente relazione tecnica (Allegato A).

Trend (2011-2020)

Nelle tabelle che seguono sono riportati gli esiti della conformità rilevati nel periodo 2011-2020 e, a seguire, l'indicazione dei parametri che nelle varie annualità hanno comportato la non conformità delle acque.

Acque idonee alla vita dei pesci. Conformità 2011 - 2020

		cque iuonee	1						1			
Sito de	esignato	Stazione	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
1-BA	Fiume Ofanto	VP_FO01	NC	NC	С	С	NC	С	NC	NC	NC	NC
I-DA	Tidille Gianto	VP_FO02	С	С	С	С	NC	С	NC	NC	NC	NC
2-BR	Fiume Grande	VP_GR01	NC	NC	С	С	NC	NC	С	С	С	С
1-FG	Fiume Fortore	VP_FF01	NC	NC	NC	NC	NC	NC	С	С	NC	NC
1-10	Flume Fortore	VP_FF02	NC									
2-FG	Torrente Saccione	VP_TS01	NC	С	NC	NC						
3-FG	Stagno Daunia Risi	VP_TC03	N.A.	NC								
4-FG	II vasca Candelaro	VP_TC02	NC	С	NC	NC						
5-FG	Torrente Candelaro	VP_TC01	NC	С	NC	NC						
6-FG	Torrente Salsola	VP_SA01	NC									
6-FG	Torrente Salsola	VP_SA02	NC									
8-FG	Torrente Cervaro	VP_CE01	С	NC	NC	NC	NC	С	С	С	NC	NC
8-FG	Torrente Cervaro	VP_CE02	С	NC	NC	NC	NC	С	С	С	NC	NC
0.50	Tarrente Caranella	VP_CA01	NC	NC	NC	NC	NC	С	С	С	NC	NC
9-FG	Torrente Carapelle	VP_CA02	NC	NC	NC	NC	NC	NC	С	NC	NC	NC
2-LE	Laghi Alimini - Fontanelle	VP_AL01	С	NC	С	С	NC	NC	NC	NC	NC	NC
1-TA	Sorgente Chidro	VP_SC01	С	NC								
2-TA	Fiume Galeso	VP_FG01	NC									
3-TA	Fiume Lenne	VP_LN01	С	NC	NC	NC	С	С	С	NC	NC	NC
4-TA	Fiume Lato	VP_FL01	С	NC	NC	NC	С	С	С	NC	NC	NC

Parametri che hanno condizionato la non conformità delle acque. Periodo 2011 – 2020

				Parametri che nanno condizionato la non contormita delle acque. Periodo 2011 – 2020	nanno condizi	onato la non c	ontormita delle	acque. Period	0 2011 – 2020				
.is	Sito designato	Codice stazione	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
L-	Fiume	VP_F001	BOD ₅	BOD ₅			BOD ₅		NH4, HOCI	TSS, NH ₃ , HOCL	HOCL	BOD ₅ , HOCI	
	Ofanto	VP_F002					BOD ₅		HOCI	TSS, HOCL	HOCL	BOD ₅ , HOCI	
	Fiume Grande	VP_GR01	BOD ₅	ІЭОН			BOD ₅	BOD₅, NH₃, NH₄					
	Fiume	VP_FF01	HOCI	НОСІ	HOCI	HOCI	НОСІ	HOCI			HOCL	BOD ₅ , HOCI	
	Fortore	VP_FF02	HOCI	ЮН	HOCI	HOCI	NH ₃ , HOCI	HOCI	HOCI	HOCI	HOCL	HOCI	
	Torrente Saccione	VP_TS01	HOCI	ІЭОН	HOCI	HOCI	NH ₃ , HOCI	НОСІ	BODs		НОСГ	НОСІ	
	Stagno Daunia Risi	VP_TC03		BOD₅, NH₄, HOCI	BOD ₅ , NH ₄ , NH _{3,} HOCl	BOD ₅ , NH ₄ , NH _{3,} HOCl	BOD ₅ , NH ₃ , NH ₄ , HOCI	BOD ₅ , NH ₃ , NH ₄ , HOCI	BOD ₅ , NH ₃ , NH ₄	TSS, BOD ₅	BOD _{5,} HOCL	HOCI, BOD ₅ , NH ₄ , NH ₃	
	II vasca Candelaro	VP_TC02	HOCI, BOD₅, NH₃, NH₄	HOCI, BOD ₅ , NH ₄	HOCI, BOD ₅ , NO ₂ , NH ₄ , NH ₃	HOCI, BOD ₅	НОСІ	BOD ₅ , NH ₃ , NH ₄ , HOCI	BOD₅, NH₃, NH₄		HOCI, BOD ₅ , NH ₄ , NH ₃	HOCI, BOD ₅ , NH ₄ , NH ₃	
	Torrente Candelaro	VP_TC01	TSS, HOCI, BOD₅, NH₄	HOCI, BOD ₅ , NH ₄	HOCI, BOD₅, NH₄	HOCI, BOD₅, NH₄, NH₃	BOD ₅ , NH ₃ , NH ₄ , HOCI	BOD ₅ , NH ₃ , NH ₄ , HOCI	BOD ₅ , NH ₃ , NH ₄		HOCI, BOD ₅	O2, HOCI, BOD ₅ , NH ₄ , NH ₃	
	Torrente	VP_SA01	HOCI, NH₄	HOCI, BOD₅, NH₄	HOCI, BOD ₅ , NO ₂ , NH ₄ , NH ₃	HOCI, NH4, NH3	BOD ₅ , NH ₃ , NH ₄ , HOCI	BOD ₅ , NO ₂ , NH ₄ , NH ₃ , HOCI	BOD ₅ , NH ₄ , NH ₃ , HOCI	NH _{4,} NH ₃	NH4,NH3, HOCL	HOCI, BOD ₅ , NH ₄ , NH ₃	
	Salsola	VP_SA02	TSS	ЮН	HOCI	носі	ЮН	NH _{3,} HOCI	BOD ₅ , NH ₄ , NH ₃ , HOCl	HOCI, BOD₅, NH₄, NH₃	HOCI, BOD ₅ , NH ₃	HOCI, BOD ₅ , NH ₄ , NH ₃	
	Torrente	VP_CE01		ІЭОН	HOCI	HOCI	NH ₃ , HOCI				HOCL (loq)	HOCI, BOD ₅ , NH ₃	
	Cervaro	VP_CE02		ІЭОН	HOCI	HOCI	NH ₃ , HOCI				HOCL	HOCI, BOD ₅	
	Torrente	VP_CA01	HOCI	HOCI	HOCI	HOCI	НОСІ				HOCL	HOCL	
	Carapelle	VP_CA02	BOD ₅	HOCI, BOD ₅	HOCI	HOCI	NH₃, NH₄, HOCI	NH ₃		NH _{4,} NH ₃	HOCL	HOCI, BOD ₅ , NH ₄ , NH ₃	
	Laghi Alimini - Fontanelle	VP_AL01		ЮН			BODs	BOD_5	НОСІ	BOD ₅	HOCI	BODs	
	Sorgente Chidro	VP_SC01		NH₄	NH₄	02	02	02	O ₂ , HOCI	BOD _{5,} HOCL (loq)	BOD ₅ , HOCL (loq)	BOD₅, NH₄	
	Fiume Galeso	VP_FG01	носі	VH⁴	NH_4	O ₂ , HOCL	О2, НОСL	02	02	BOD _{5,} HOCL (loq)	BOD ₅ , HOCL (loq)	HOCI, BOD ₅ , NH ₄	
	Fiume Lenne	VP_LN01		NH₄	NH_4	NH₄, HOCL				BOD _{5,} HOCL (loq)	BOD ₅ , HOCL (loq)	BOD ₅ , NH ₄ , NH ₃	
	Fiume Lato	VP_FL01		vHN	NH ₄	NH₄				BOD _{5,} HOCL (loq)	BOD ₅ , HOCI	HOCI, BOD ₅ , NH₄	

In grassetto, con la dicitura **HOCI (loq)** sono indicate le Non Conformità del parametro **Cloro residuo totale** imputate al limite di quantificazione delle metodiche analitiche utilizzato, superiore al limite di legge.

6/6

Allegato A Acque dolci superficiali idonee alla Vita del Pesci - Annualità 2020 Parametri di cui alla Tabella 1/8 del D.Lgs. n. 152/2006

µg/1 1/8**u**l 0,5 0,05 m.l.a p.l.a 100 100 2,5 0,2 l/6rd mg/l 0,2 1/611 µg/1 mg/l 0,004 mg/ 0,2 mg/l 0,025 0,005 (***) mg/l l/gm 0,01 0,05 m.l.q. 0,10 1,77 0,03 0,14 mg/l mg/l 23 mg/l unità l/gm otnetO emuit ofnetO emuit

20 21		Nichel	1/6 11 1/6 11	75 50		1 m.l.q.	1 m.l.q.				2 m.l.q.		2 m.l.q.		2 m.l.q.	ď				2 m.l.q.		2 m.l.q.		2 m.l.q.	2 m.l.q.		2 m.l.q.			2 m.l.q.								2 m.l.q.		0		6 0.3		4 0,1			2 0,1
19	əlstot	Mercurio	nt 1/6ml	2'0	0,05	m.l.g.					m.l.q.		m.l.q.	m.l.q.		m.l.a.						m.l.q.					m.l.q.			m.l.q.				m.l.q.				0,03		2		m.l.a.		m.l.q.			m.l.a.
18		ошолЭ	1/611	100		m.l.q.	m.l.q.			m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.a	m.l.q.			m.l.q.	m.l.q.	B.I.G	m.l.a	m.l.q.	m.l.q.	m.l.q.	e i.e	hum		m.l.q.	m.l.q.	m.l.a	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.		- 8	# III	m.l.a	m.l.a.	m.l.q.	m.l.q.	m.l.q.	-
17	əlsto	t olmbeO	1/6 ri	2,5	0,2	m.l.g.	m.l.q.			m.l.q.	m.l.a	m.l.q.	m.l.q.	0,1	m.l.q.	m.l.a.	m.l.q.			m.l.q.	0,1	m.l.q	el el	m.l.q.	m.l.q.	m.l.q.	e i	hum		m.l.q.	m.l.q.	m.l.a	m.l.q.	m.l.q.	m.l.q.	m.l.g.	m.l.q.	m.l.q.		8	m.rq.	m.l.q.	m.l.a.	m.l.q.	m.l.q.	m.l.q.	- E
16		Arsenico	l/Bril	20		m.l.q.	m.l.q.			m.l.a.	e; e	m.l.q.	m.l.q.	1	m.l.q.	m.l.a	m.l.q.			1		2 *	4	m.l.q.	1		7 0 0	kum		2	2 2	2	2	1	1	2	3	2		и	n «	n in	2	9	3	2	2
15		TeolznaT (isinoins)	l/6m		0,2	m.l.g.	m.l.q.			m.l.q.	m.l.q	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.a	m.l.q.			m.l.q.	m.l.q.	B.I.q	e e	m.l.q.	m.l.q.	m.l.q.	ė. E	hum		m.l.q.	m.l.q.	m.l.a	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	0,4		0	1,0	0.2	0,1	m.l.q.	m.l.q.	m.l.q.	2
14		Кате	1/611	40		3	1			1	1 1	m	m.l.q.	1	r	1	m.l.q.			2	2	7	1	1	2	2	1 -	4		2	2	2	2	1	2	2	2	1		c	o «	n en	e	2	2	2	~
13		Sinco	1/611	400		16	m.l.q.			m.l.q.	e, e	15	m.l.q.	m.l.q.	m.l.q.	S P	m.l.q.			m.l.q.	14	m.l.q.	n.l.a	m.l.q.	m.l.q.	. 28	m.n.e	hum		m.l.q.	m.l.q	m.l.a	m.l.q.	m.l.q.	14	19	m.l.q.	12		۶	8 4	15 15	23	m.l.g.	11	18	23
12	Cloro residuo totale	носі	l/6m	0,004		0,040	n.d.			0,010	m.l.q	0,010	n.d.	.p.u	n.d.	0,070	090'0			0,050	n.d.	0,030	m.l.a.	0,110	0,070	0,070	0,080	OCO/O		0,080	n.d.	0,020	0,050	0,100	0,050	0,030	00'0	0,050		8	H.1.4.	n.d.	m.l.a.	0,240	n.d.	0,030	0 060
11	eseinommA esele	³HN	l/6m	1	0,2	0'0	0'0			0'0	0,0	0,1	0,1	0'0	0,0	0,2	0,1			0,1	0,1	0,1	0.1	0,1	0,2	0,3	0,2	P.		0,1	0,1	0,1	0,1	0'0	0,2	9'0	2,4	8,5		0	2,0	0,6	1,2	0'9	0,2	0,1	0.4
10	Ammoniaca stassinoi non	^E HN	₩	0,025	00'0	m.l.q.	0,002			0,002	0,002	0,008	600'0	0,002	n.d.	0,001	0,002			900'0	0,004	0,008	0.007	0,004	0,005	600'0	0,004	conío			0,009	0,005	900'0	0,003	0,007	0,025	0,046	0,168		0.042	0,012	0,013	660'0	0,441	0,011	0,004	m
6	anigho ib in	ldrocarbi petrolife	l/6m	(***)	0,2		m.l.q.				p.l.a		m.l.q.	m.l.q.	m.l.q.	m.l.a					m.l.q.			m.l.q.			m.l.q	hum		m.l.q.							m.l.q.	ı		8		m.l.a		m.l.q.			- W
∞	isenolici	tsodmoo	l/Bm	(**)	10'0		m.l.q.				E E			m.l.q.		E E						ф: I		m.l.q.			E E			m.l.q.							m.l.q.	١		8		m.l.a		m.l.q.			- W
7	τ,	Vitriti NC	l/6m	1,77	0,03		m.l.q.				m.l.a			m.l.q.		m.l.a.					m.l.q.										m.l.q.							ı							0,24		0.71
9	əlsto	f orofzoi	l/6m		0,14	. 0,02	0,02			0,14	0,02									0,12	0,58	0,25	0.30			0,08	0,42	50		0,50	0,21		0,28	0,22	0,20	0,07	0,97	1,16		1 37	1,27	0.46	2,83	2,80	0,77	0,71	0.53
5		BOD ²	la mg/	6 (9 9	m.l.q.	3			4		2	4	5	e (13	m.l.q.			8		m «	7	3	m.l.q.	4	4 6	2		4		4	8	5	5	9	15	25		đ		1 12	14	9	3	2	oc
4	and and	llshatsM biznaqzoz	mg/l media	80	25	29	18			40	154	65	41	99	43	+STT	87			161	825 216	283	143	90	95	132	25			09	184 81	53	61	92	83	33	30	24		151	T	111	113	40	123	26	125
· ·		Нq	unità		6 - 9		8				00 00					0 80						00 0			8		00 00				8 8			8		8		8		۰		0 00					00
2	70	onagizzO	mg/l ur	≥7 (50%)	28 (50%) 6		12	ttività)			11		10	10		12			_		6			10			12		ttività)	11								ı	ttività)			n 01		10			11
1	enna	Tempera	٥,	28 ≥7	82 53		14	COVID (fermo attività)	(fermo a		21					9		(fermo a	(fermo a		23						13	(fermo a	COVID (fermo attività)		22							12	COVID (fermo attività)	COVID (fermo attività)		25				15	
plente				_	9	VP_FF01	VP_FF01			VP_FF01	VP_FF01	- FF01	o_FF01	VP_FF01		VP FF02	VP_FF02			VP_FF02	VP_FF02	VP_FF02	2 FF02	VP_FF02	P_FF02	P_FF02	L TS01			VP_TS01	VP_TS01	VP TS01	VP_TS01	VP_TS01	VP_TS01	VP_TS01	_TC03	VP_TC03	Ì	VP_TC03 COV	1700	VP TC03	, TC03	VP_TC03	VP_TC03	VP_TC03	TC03
dell'Ambiente						Ц	_			4	-	-	-				-			+		+	+	H		+	-			H	-	+			L			4			+	-	-	_	H		
ARPA PUGLIA						08/01/2020	18/02/2020	marzo			23/06/2020	_	/60/80	21/10/2020	05/11/	09/01/2020	13/02/2020	marzo	aprile			09/01/2020	/60/07	20/10/2020	26/11/2020	15/12/	09/01/2020	marzo		12/05/2020			<u> </u>	20/10/2020	26/11/	15/12/2020	/20/90	11/03/2020	marzo			16/07/2020	_	09/09/2020	06/10/2020	10/11/2020	16/12/2020
RPA PU						-				e101	101 9r	Film				1-FG				910	toot e	-willi				-				-uoi3	2-FG 58-590	ne110				-				izif		3-FG	use1	3			_

21		Piombo	1/6#	20		m.l.q.	m.l.q.		0.4	m.l.q.	m.l.q.	0,4	5,	0,5		m.l.g.	m.l.q.			0,2	0,2	0,1	1,1	0,2	2,2	0,1	m.l.q.	9.1.0		0,1	1,1	m.l.q.	0,2	0,4	0,3	m.l.q.	m.l.q.	m.l.q.		-	m.l.q.	m.l.q.	m.l.q.	m.l.q.	.l.q.	0,2	.l.q.
20		Nichel	n l/6nt				2 m			2 m				2 0			3 m				9			4 (3 (W 7			4 0		3 0				1 m	E		2 m					2 m		
19	əlistot	Mercurio	1 1/611	0,5	0,05		m.l.q.		m la				m.l.q.		the second		m.l.q.			m.l.q.				m.l.q.				m.r.q.			m.l.q.		m.l.q.				m.l.q.	m.l.q.		o l m			m.l.q.			m.l.q.	
18		Cromo		100	_		m.l.q. m		m o m			m.l.q. m			m.l.a		m.l.q. m			m.l.q.				m.l.q. m				m.i.q.			m.l.q. m		m.l.q.					m.l.q. m			m.l.q.		m.l.q. m			m.l.q. m	
17	eliste	d olmbs)	1 1/611	2,5	0,2		m.l.g. m				m.l.q. m						m.l.q. m			m.l.q.								m.l.q.				m.l.q.				m.l.q. m		m.l.q. m			m.l.a. m				m.l.q. m		
16		Arsenico	nt _{I/} 6nt	20	_		2 m			2 m				2 (2 2				3 m			1 .	1				2 8			2 m	1 m	1 a	2 m		2					2 m		
15 1		TeoisraT (ioinoine)	m l/6m		0,2		m.l.g.				0,2			m.l.q.			0,4			0,4								5'0				m.l.q.					ı.l.q.	m.l.q.		9	0,1		m.l.q.		m.l.q.		
14	ivi	Rame	n 1/6#	40			3 m		2				2 m							2				2 m				m.l.q.			2 (2 m	1	3	2 m	E		2	2		2 m			2 m	
13		osuiz	l/6rf	400		17	19		15	15	16	28	28	28	37	.l.a.	12			14				m.l.q.	.h.l.q.	15				10	m.l.q.	1.l.q.	m.l.q.	12	12	11	p.l.a.	m.l.q.		13	m.l.a.	30	.l.a.		m.l.q.	16	ı.l.q.
12	Cloro residuo totale	носі		0,004		m.l.q.	0,050				0,040									0,010												n.d. n						0,250 n							0,100 m		
11	Ammoniaca totale	³HN	mg/l	1 0	0,2		0,1 0				3,5 0									1,2 0												0,2													0,1 0		
10	Ammoniaca non ionizzata	^E HN	u V J	0,025	0,005		0,003				0,084									0,036				0,010								0,039													0,007		
6		petrolifer	mg/l	0 (***)	0,2 0		m.l.q. 0		o olm					m.l.q. 0			m.l.q. 0			m.l.q. 0				m.l.q. 0							m.l.q. 0		m.l.q.					m.l.q. 0			m.l.a. 0				m.l.q. 0		
8		Composti	mg/l	.) (**)	10'0		m.l.q. m				m.l.q. m						m.l.q. m			m.l.q.				m.l.q. m							m.l.q. m							m.l.q.			m.l.a				m.l.q. m		
7	۲,	ON INTERIOR	mg/I	1,77 (0,26 m				0,40 m									1,64 m												m.l.q. m						m.l.q. m							m.l.q. m		
9		oroizoi	mg/l				1,51 0				6,78									1,97												0,86 m													0,59 m		
5		8OD ²	mg/I	6	9		m.l.q.		7				7 3			25 1				9 0		30 1				11 0		20					2 2				9	3			2				8 (
			media	80	52		٢				27		1	<u> </u>							22										55		<u> </u>								L	87			Ш		_
4	ni ene	llsinətsM olznaqzoz	₩ mg/l			20	34		51	66	09	92	101	157	20	57	39			35	94	79	52	40	37	85	16	20		31	25	187	15	15	18	195	41	36		130	76	101	77	121	105	110	69
3		Нq	unità		6-9	8	80		oc		8	80	∞ .		0 00		8			00 0			8	8	8	80	00 0	20		8	89	o «		8	80	80	00	00		o	6		80	80	8	00	8
2	ž0	onagissO	I/6m	>27 (50%)	28 (50%) 25 (100%)	11	10	ermo attività)	g attivities	9	7	10	∞ :	11	10		6	o attività)	o attività)		4	1	10	10	7	11	10	11	o attività)	6	80	9	6	6	80	10	13	12	o attività)) dttivitd)	10	10	6	6	8	11	13
1	enut	Tempera	၁့	28				COVID (fermo attività)	20	24	25	27	26	17	13	6	11	COVID (fermo attività)	COVID (fermo attività)	21 8	25	27	25	20	15	10	14	12 OVID (form	COVID (fermo attività)	23	23	29	22	18	16	12	6	12	COVID (fermo attività)	21 11	22	25	25	24	15	15	10
				-	U	VP_TC02		VP TC02		/P_TC02	rP_TC02	/P_TC02	/P_TC02	/P_TC02	70 TC02	/P TC01	/P_TC01	VP_TC01 C		VP_TC01		VP_TC01						VP_SA01			VP_SA01	VP_SA01	VP_SA01	VP_SA01	VP_SA01	VP_SA01	VP_SA02	T	VP_SA02 C		VP SA02	'P_SA02	'P_SA02	VP_SA02	'P_SA02	VP_SA02	'P_SA02
				Ц			1		H	-	H	_	+	+	╁	+		H		+	+	-	Н	Н	4	4	4	+	+	Н	+	+	-	Н	4	1	+	+	+		-			L	H	_	_
						16/01/2020	12/02/2020	marzo	8	<u> </u>		!	10/09/	22/10/2020	10/12/	./20/90	11/03/2020	marzo		19/05/2020				06/10/2020	10/11/	16/12/	04/02/	05/03/2020	aprile		01/07/2020	_	03/09/2020	01/10/2020	05/11/2020	01/12/2020	15/01/2020	19/02/2020	marzo		16/06/2020			17/09/2020	13/10/	18/11/2020	17/12/
									one		4-p	6V II							01	eləbu	5-FG 53-S3 5	n9110	1							elos	ie2 91	orren	L			94-	9			eli	osleS	etne:	TOTE				_

20 21		Nichel	l/6rl l/6rl	75 50		m.l.q. m.l.q.				m.lo. m.lo.	m.l.q. m.l.q.			m.l.q. m.l.q.		1 m.l.q.		1 m.l.q.		m.l.a.						ol m		m.l.q. m.l.q.		-	m.l.a. m.l.a.	m.l.q. m.l.q.	2 m.l.q.		1 m.l.a.		1 m.l.q.				2 m.l.q.				5 0,2	
19	əlstot	Mercurio	1/611	9'0	0,05	m.l.q.	m.l.q.		-	÷ = =	m.l.q.	m.l.q.		m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.		0,02						- 8	i e	m.l.q.		2	m.l.q.	m.l.q.	m.l.q.	8	m.l.a.	m.l.a	m.l.q.	m.l.q.			m.l.q.		m.l.q.	m.l.q.	m.l.q.	m.l.q.
18		Cromo	1/611	100		m.l.q.	m.l.q.		0 0	÷ =	m.l.q.	m.l.q.		m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.		m.l.g.						8	m.l.a	m.l.q.		e e	m.l.q.	m.l.q.	m.l.q.	8	m.l.a	m.l.a	m.l.q.	m.l.q.			m.l.q.		m.l.q.	m.l.q.	m.l.q.	m.l.q.
17	əlsto	olmbe2	1/611	2,5	0,2	m.l.q.	m.l.q.		o l oo	mud.	m.l.q.	m.l.q.		m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.		m.l.g.						9	m.l.a	m.l.q.		8	m.l.q.	m.l.q.	m.l.q.	8	m.l.a.	0,1	m.l.q.	m.l.q.			m.l.q.		m.l.q.	m.l.q.	0,1	0,1
16		osinserA	l/Brl	20		m.l.q.	m.l.q.		0 0	e la	1	1		m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.		m.l.a.						9	m.l.a	m.l.q.		8	m.l.q.	m.l.q.	m.l.q.	8	m.l.a	m.l.a	m.l.q.	m.l.q.			1		2	25	9	3
15	ivi	Tensioatt (isinoins)	l/6m		0,2	m.l.q.	m.l.q.		0 0	thin a	0,1	m.l.q.		m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.		m.l.a.	m.l.g.	· Carron				5	m.la	m.l.q.		8	m.l.q.	m.l.q.	m.l.q.	8	m.la	m.l.a.	m.l.q.	m.l.q.			m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
14		Rame	1/611	40		1	1			- E	m.l.q.	2		m.l.q.	m.l.q.	2	1	e		-							•	2		2	m.l.q.	m.l.q.	2		2		2	2			2		3	80	4	5
13		osuiZ	I/Brl	400		m.l.q.	m.l.q.		0	10 t	10	m.l.q.		m.l.q.	12	m.l.q.	m.l.q.	15		m.l.a						- 8	m.l.a	m.l.q.		8	m.l.q.	m.l.q.	m.l.q.	44	m.l.a	11	24	m.l.q.			m.l.q.		m.l.q.	20	18	18
12	Cloro residuo totale	ЮСІ	l/6m	0,004		0,030	m.l.q.		0.000	0,010	n.d.	0,020		0,050	0,030	0,090	0,060	n.d.		m.l.a	080'0	11.6				0 000	n.d.	m.l.q.		0.120	m.l.q.	n.d.	n.d.	0100	0,010	n.d.	m.l.q.	090'0			m.l.q.	0,070	0,370	n.d.	n.d.	n.d.
11	eseinommA tofale	⁵HN	l/gm	1	0,2	0,1	0,1		0	0,0	0'0	0'0		m.l.q.	0,2	1,0	0'0	0,1		m.l.a.	0,0	-4-				- 8	0.0	0,0		00	m.l.q.	0'0	0,1	-	0.1	0,1	8'0	0,5			9'0	0,1	0,1	1,2	0,5	0,1
10	Ammoniaca sfessinoi non	^E HN	ивш	0,025	0,005	0,003	0,004		0000	0,004	0,002	0,011		m.l.q.	0,020	0,059	m.l.q.	900'0		m.l.g.	0,003					0 0	0.003	0,003		0.003	m.l.q.	m.l.q.	900'0	8	0.004	0,004	0,027	0,029			0,064	600'0	0,014	0,085	0,029	0,011
6	anigho ib in 6	Idrocarbi petrolifer	l/Bm	(***)	0,2	m.l.q.	m.l.q.		0 0	- E	m.l.q.	m.l.q.		m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.		m.l.a							m.l.a.	m.l.q.		e la	m.l.q.	m.l.q.		8	0.1	m.l.a.	m.l.q.	m.l.q.			m.l.q.		m.l.q.	m.l.q.	m.l.q.	m.l.q.
8	isilonei	Composti	l/Bm	(* *)	0,01	m.l.q.	m.l.q.		0 0	÷ =	m.l.q	m.l.q.		m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.		m.l.a	m.l.a					0 8	a.l.a	m.l.q.		5 8	m.l.q.	m.l.q.	m.l.q.	8	t d	m.l.a	m.l.q.	m.l.q.			m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.
7	ī,	ON iri-iriN	I/6m	1,77	0,03	m.l.q.	m.l.q.		0 00	104	95'0	m.l.q.		m.l.q.	m.l.q.	m.l.q.	0,52	0,41		m.l.a.	m.l.q.	F				9	60'0	60'0		a a	80'0	m.l.q.	m.l.q.	0.13	90'0	m.l.a.	m.l.q.	0,64			1,40	0,20	m.l.q.	96'0	0,62	0,24
9	əlsto	orofzo4	I/6m		0,14	0,17	0,01		0.40	0,10	1,15	69'0		0,33	90'0	0,07	0,04	0,51		80'0	0,21					0.34	0,03	0,40		0.37	0,14	0,04	m.l.q.	0.15	20'0	69'0	0,20	0,36			95'0	0,53	0,38	0,68	1,40	1,86
2		BOD ²	I/Bm	6	9	2	m.l.q.		,	* "	14	9		m.l.q.	4	3	9	10		e	m.l.q.	-F				0 8	3	m.l.q.		u		4	3	u	. 9	e e	9	3			3	4	13	14	7	4
5	əuc	oįsuadsos	media	80	52		1			1	22				ı		1				, T	224										183	_	1	T	T					Т	111	·	_	_	
_	uj	Materiali	₩BW			6	9		36	23	75	21		9	2	27	S	1057		20	12	i				36	15	30		19	31	35	17	17	37	1444	18	63			84	9/	162	252	158	126
3		Hq	unità		6 - 9	8	6	(F)	(E	n σ	00	6		6	6	6	00	∞	<u> </u>	6	6					۰	6	6	(+	o (6	6	8	80	٥	0 00	6	- 00	6	(t		6	6	8	00	00	6
2	°o	onegissO	I/Bm	>7 (50%)	28 (50%) 25 (100%)	11	12	COVID (fermo attività)	COVID (rermo attivita)	1 1	10	12		11	11	11	13	13	COVID (fermo attività)	12	10					:	13	12	COVID (fermo attività)	COVID (rermo attivita)	13	6	10	13	11 17	12	13	12	COVID (fermo attività)	COVID (fermo attività)	10	10	10	00	7	10
1	tura	Tempera	၁့	28		14	14	COVID (fe	COVID (Ter	24	25	25		18	16	11	6	12	COVID (fer	18	22					43	10	12	COVID (fe	COVID (fer	23	24	26	17	4	7	10	12	COVID (fe.	COVID (fe	20	23	25	25	25	18
				_	g	VP_CE01	VP_CE01	VP_CE01	VP_CE01	VP CF01	VP_CE01	VP_CE01	VP_CE01	VP_CE01	VP_CE01	VP_CE01	VP_CE02	VP_CE02	VP_CE02	VP CE02	VP CE02	VP_CE02	VP_CE02	VP_CE02	VP_CE02	VP_CE02	VP CA01	VP_CA01	VP_CA01	VP_CA01	VP CA01	VP_CA01	VP_CA01	VP CA01	VP CA01	VP CA01	VP_CA02	VP_CA02	VP_CA02	VP_CA02	VP_CA02	VP_CA02	VP_CA02	VP_CA02	VP_CA02	VP_CA02
						04/02/2020	19/02/2020	marzo	aprile	14/03/2020	29/07/2020	20/08/2020	settembre	01/10/2020	05/11/2020	01/12/2020	22/01/2020	04/03/2020	marzo	07/05/2020	03/06/2020	luglio	agosto	settembre	ottobre	novembre	28/01/2020	12/03/2020	marzo	aprile 05/05/2020	18/06/2020	29/02/2020	26/08/2020	36(16)(3030	19/11/2020	09/12/2020	22/01/2020	04/03/2020	marzo	aprile	07/05/2020	03/06/2020	08/07/2020	13/08/2020	02/06/2020	08/10/2020

21		odmoiq	1/611	20		0,4	6'0	0,4	0,2	0,2	m.l.q.	1,0	0,1	0,1	.l.q.	0,1	1,0	. l.q.	÷ -		.i.q.	.l.q.	.l.q.	0,1		0.1	.l.a.	0,1	.l.q.	0,1	.l.q.	.l.q.	.l.q.	0,1	.l.q.	.l.q.		m.l.q.	0,1	0,1	0,2	0,3	0,3	2,0		0,1	.l.q.
20		Nichel														m.l.q.																														1 1	
19	elstot	Mercurio	1/611	5'0	0,05											m.l.q.																															
18		ошолЭ	1/611	100												m.l.a.															- 1										1					2	
17	əlsto	d olmbs2	1/611	2,5	0,2	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	p la	m.l.a	m.l.q.	m.l.q.	m.l.q.	m.r.q.	9.I.q.	# F	m.l.a.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.a.	m.l.a.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.i.q.	m.l.q.	m.l.q.
16		osinasıA	1/6#	20		m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.i.q.	m.l.a.	m.l.q.	m.l.q.	m.l.a.	٠,	1 1	٠.		m.l.q.	1	m.l.q.	m.l.q.	m.l.q.	4	1	1	1		m.l.q.	m.l.q.	m.l.q.	1	1		1 1	1	1	1	1	1	2	7 (7		2
15	ivi	Tensioatt (anionici)	l/gm		0,2	0,1	0,2	0,2	0,1	0,3	0,2	50	m.l.a	6'0	0,2	6'0	. i.d.	ė. I	m.r.q	n.l.a	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.a	m.l.q.	m.l.g.	m.l.q.	m.l.q.	m.l.q.	p.l.a	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.a.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	0,1	m.l.q.	m.r.q.	m.l.q.	m.l.q.
14		узше	1/611	40		m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.e.	m.l.q.	m.l.q.	m.l.q.		٠,		t I	m.l.a	m.l.q.	m.l.q.	m.l.q.	1			2	1	m.l.q.		p.l.a	m.l.q.	m.l.q.	m.l.q.	1	m.l.q.	m.i.q.	2	1	1	2	m.l.q.	2	m.l.q.	- m	1	2
13		osuiZ	1/611	400		32	m.l.q.	13	23	16	m.i.e.	÷ =	÷ ;	m.l.q.	45	23	07	20	17	28	m.l.q.	34	09	16	12	# H	11	11	12	m.l.q.	15 m l a	26	m.l.q.	19	10	13	m.i.q.	21	10	m.l.q.	m.l.q	40	13	m.i.q.	TT W	r b'l'u	m.l.q.
12	Cloro residuo totale	ЮСІ	I/6m	0,004		m.l.q.	0,170	090'0	m.l.q.	m.l.q.	m.l.q.	p.l.q	m.l.a	m.l.q.	m.l.q.	0,050	p.i.d.	m.l.q.	m.i.q.	m.l.a	m.l.q.	m.l.q.	0,020	m.l.q.	m.l.q.	m.l.a.	m.l.a.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	0,010	0,010	m.l.q.	m.l.q.	m.l.q.	m.l.a.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	0,010	m.l.q.	u,uzu,	m.l.q.	m.l.q.
11	eseinommA totale	³HN	l/gm	1	0,2	0'0	0,1	0'0	m.l.q.	0′0	0,0	0,1	0,1	0'0	0,1	0,1	c'n	80	÷ =	0.1	0,1	0,1	0,1	0,3	16,6	2,2	2,7	6'0	m.l.q.	m.l.q.	0,1	0′0	0,2	22,6	2,7	12,3	0'T	1,9	m.l.q.	6,0	0,4	0,2	0,1	0,1	16.4	14,9	9'6
10	eseinommA esessinoi non	⁵HN	₩ mg/l	0,025	0,005	m.l.q.	0,002	0,002	m.l.q.	0000	900'0	0,025	0,010	m.l.q.	800'0	0,002	m.rq.	B.I.q.	# E	n.l.a	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.a	m.l.g.	m.l.q.	m.l.q.	m.l.q.	m.l.q	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.a.	0,050	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.i.q.	m.l.q.	m.l.q.	0,070
6	erigino ib in	ldrocarbi petrolifer	I/6m	(***)	0,2	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	p.l.q	m.l.a	m.l.q.	m.l.q.	m.l.q.	p.i.d.	m.l.q	m.i.q.	0.2	m.l.q.	0,2	m.l.q.	0,1	m.l.q.	0.1	m.l.a.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	0,1	m.l.q.	0,1	0,1	m.l.q.	m.l.a	m.l.q.	m.l.q.	m.l.q.	0,2	0,2	m.l.q.	m.l.q.	nla	m.l.q.	m.l.q.
8	i fenolici	gsodwog	l/6m	(* *)	0,01	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.m	p a	m.l.a	m.l.q.	m.l.q.	0,15	b'I'd	B 1	÷ =	m.l.a	m.l.q.	m.l.q.	m.l.q.	m.l.q.	ж. Б. с	th di	m.l.a	m.l.q.	m.l.q.	m.l.q.	е. Б. Б.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	a.l.a	g 1.0	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	p.l.e	b: E	m.l.q.	m.l.q.
7	τ,	ON INITAIN	I/6m	1,77	0,03	00'0	00'0	00'0	0,01	m.l.q.	m.l.q.	m.i.q.	m.l.g.	m.l.q.	m.l.q.	m.l.q.	m.r.q.	p. I	bi a	0.12	80'0	m.l.q.	m.l.q.	m.l.q.	B.I.q	0.15	m.l.a.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	mq.	0,39	0,31	0,26	0,16	0,32	m.l.q.	m.l.q.	et,u	0,33	90'0
9	əleto	orotzo4	l/6m		0,14	0,15	0,15	0,03	m.l.q.	0,01	0,02	0,01	0,10	0,02	0,02	0,01	m.r.q.	e i	÷ =	0.18	0,18	0,25	m.l.q.	m.l.q	e e	p a	m.l.a.	m.l.q.	m.l.q.	m.l.q.	0,18	0,18	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.i.q.	0,04	0,02	0,02	0,26	0,25	0,18	/0/0	0,20	0,19	0,16
2		BOD ²	l/gm ei	6	9	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	22	m.i.q.	10	11	m.l.q.	m.l.q.	77	m L	n m	o l'e	15	m.l.q.	m.l.q.	00	00 m	o m.l.a.	e	8	4	m.l.q.	m.l.q.	18	13	10	6	m.l.q.	4 E	m.l.q.	m.l.q.	m.l.q.	3	12	21	23	67	m.l.q.	m.l.q.
4	oi enc	llshətsM olznaqzoz	mg/l media	80	25	6	3	6	∞	12	12	3 10	20	15	8	10	7	m	7 6	2	2	2 2	.l.q.	2	2	2		2	2	2	2	2 2	.l.g.	2	.l.q.		7 4	. 6	6	3	3	3	13	9 ,	4 5	7	18
3		Нq	unità n		6-9	8	8		6	6	6 6	. 0	6	80	6	00 1	, ,	7	,	7	7	7	7 m.	7	7	,	7	7	7	7	7	7	7 m.l	7	7 m.l.	7	\ 80			8	8	80	80 1	00 0	0 00		7
2	°0	onsglssO	n l/6w	≥7 (50%)	20%)	11										10													6				8	10	88						11					0 0	6
1		Tempera	u o,	28 ≥7	88 53											10																									19					17	14
					9	AL01	AL01	AL01	VP_AL01	AL01	VP_AL01	VP_ALOI	AL01	VP_AL01	AL01	AL01	VP_5001	5001	VP SC01	VP SC01	VP_SC01	VP_SC01	VP_SC01	SC01	VP_SC01	SC01	VP FG01	VP_FG01	FG01	VP_FG01	VP_FG01	VP_FG01	VP_FG01	FG01	FG01	VP_FG01	LN01	VP_LN01	INO1	VP_LN01	LN01						
						۸۸	ΛN	-	_	d>	+	+	+	L	ΛΛ	_	+	+	+	+	L	H	H	+		-	-	Н	4	+	-	_	Н		_	-	+	<u> </u>			Н	4	+	+	+	-	\vdash
						17/01/2020	11/02/2020	04/03/20	30/04/2020	26/02/2020	11/06/2020	25/01/2020	23/09/20	16/10/2020	02/11/2020	03/12/20	28/01/2020	02/02/20/20	09/04/2020	06/05/2020	16/06/2020	07/07/2020	05/08/2020	02/06/2020	15/10/2020	30/11/20	17/01/2020	19/02/2020	24/03/20	16/04/2020	14/05/2020	21/07/2020	05/08/2020	02/09/20	19/10/20	27/11/2020	20/01/20	11/02/2020	25/03/2020	08/04/2020	27/05/2020	18/06/2020	21/07/2020	03/08/2020	19/10/20	17/11/2020	10/12/20.
									əlləu	neđuc	3J-S		цЗе7			1				Oal	у.	T-I Sente	uos								osəle	7-2 9 əm	Η				-				əuu	AT-:	£ mui∃				

21		odmoiq	1/611	20		m.l.q.	0,1	0,1	m.l.q.	0,3	0,1	m.l.q.	m.l.q.	0,3	m.l.q.	m.l.q.	0,1
				75									m .p.i				
20		Nichel	l/6rd	7		. 1	. 1	. 1	. 1	. 1	. 1	. 1	m.	. 1	. 1	. 1	. 1
19	əlstot	Mercurio	l/6rl	6'0	90'0	m.l.q.	.p.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.						
18		ошолЭ	l/Brl	100		1	1	1	1	1	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	1	1
17	əleto	ot olmbe2	I/6 rl	2,5	2′0	m.l.q.											
16		OsinesrA	1/611	20		1	1	1	2	1	2	2	2	3	3	1	3
15		Tensioatt (isinoins)	l/gm		0,2	m.l.q.											
14		gmeg	1/611	40		2	1	1	1	m.l.q.	2	1	2	1	2	1	3
13		oouiz	1/6#	400		16	20	24	17	m.l.q.	13	24	m.l.q.	11	22	m.l.q.	m.l.q.
12	Cloro residuo totale	юсі	l/6m	0,004		m.l.q.	0,030	m.l.q.	0,080	m.l.q.	m.l.q.						
11	Ammoniaca totale	°HN	∥6m	1	2′0	6'0	3,8	m.l.q.	6,4	0,4	0,4	0,2	6,0	51,0	12,0	13,3	16,6
10	Ammoniaca non ionizzata	°HN	l/gm	0,025	500'0	m.l.g.	0,110	m.l.q.	m.l.g.	m.l.g.	m.l.g.	m.l.a.	m.l.a.	m.l.g.	m.l.g.	m.l.g.	m.l.q.
6	enigino ib in	petrolifer	l/6w	(***)	0,2	m.l.q. r	m.l.q. (m.l.q. r	0,2	0,1	0,1 r	m.l.q. r	0,1	0,1 r	m.l.q. r	m.l.q. r	0,1 r
8		Composti	-	.) (**)	10'0	m.l.q. m	m.l.q. m	m.l.q. m	m.l.q.	m.l.q.	þ.	m.l.q. m	b.	ф.	m.l.q. m	m.l.q. m	m.l.g.
			gm I/								2 m.l		q. m.l	3 m.l.			
7	ξ,	ON ITITIEN	/Buu	1,77	0,03	0,05	m.l.q.	m.l.q.	. 0,41	0,26	0,12	m.l.q.	m.l.q.	0,13	0,63	0,18	0,48
9	əletc	or oroteo T	l/6m		0,14	0,02	0,02	0,79	m.l.q.	96'0	0,31	0,24	90'0	0,04	0,05	0,09	0,07
2		80Ds	I/Bm 1	6	9	m.l.q.	m.l.q.	m.l.q.	m.l.q.	m.l.q.	14	16	25	12	18	m.l.q.	8
4		oįsuədsos	media	8	25						Ş	PF					
	uį	Materiall	иви			3	4	7	5	3	9	7	10	15	7	3	47
3		Hq	unità		6-9	8	8	8	8	8	8	8	8	8	8	8	7
2	°o	onagissO	mg/I	≥7 (50%)	≥8 (50%) ≥5 (100%)	11	11	10	11	10	8	8	6	8	9	6	10
1	tura	Temperat	٥.	28		10	10	14	16	18	22	23	24	23	22	16	12
				_	9	VP_FL01											
						16/01/2020	10/02/2020	03/03/2020	15/04/2020	11/05/2020	18/06/2020	15/07/2020	06/08/2020	07/09/2020	05/10/2020	16/11/2020	01/12/2020
						1,	10	Ö	1,			emui 21		0	ò	1(0.

ALLEGATO B

	Siti designati	Codice stazione	Giudizio di conformità	C* parametri in deroga	PARAMETRI DETERMINANTI PER LA "NON CONFORMITÀ"
1-BA	Fiume Ofanto	VP_FO01	NON CONFORME	Materiali in sospensione	HOCl, BOD₅
	Fiume Ofanto	VP_FO02	NON CONFORME	Temperatura	HOCI, BOD ₅
2-BR	Fiume Grande	VP_GR01	CONFORME		
1-FG	Fiume Fortore	VP_FF01	NON CONFORME	Materiali in sospensione	HOCI, BOD₅
1-г	Fiume Fortore	VP_FF02	NON CONFORME	Materiali in sospensione	носі
2-FG	Torrente Saccione	VP_TS01	NON CONFORME	Materiali in sospensione	носі
3-FG	Stagno Daunia Risi	VP_TC03	NON CONFORME	Materiali in sospensione	HOCI,NH ₃ ,NH ₄ ,BOD ₅
4-FG	II vasca Candelaro	VP_TC02	NON CONFORME		HOCI,NH ₃ ,NH ₄ ,BOD ₅
5-FG	Torrente Candelaro	VP_TC01	NON CONFORME		O ₂ ,HOCl,NH ₃ ,NH ₄ ,BOD ₅
	Torrente Salsola	VP_SA01	NON CONFORME	Temperatura	HOCI,NH ₃ ,NH ₄ ,BOD ₅
6-FG	Torrente Salsola	VP_SA02	NON CONFORME	Materiali in sospensione	HOCI,NH ₃ ,NH ₄ ,BOD ₅
	Torrente Cervaro	VP_CE01	NON CONFORME		HOCI, BOD ₅ ,NH ₃
8-FG	Torrente Cervaro	VP_CE02	NON CONFORME	Materiali in sospensione	HOCI, BOD₅
9-FG	Torrente Carapelle	VP_CA01	NON CONFORME	Materiali in sospensione	носі
9-FG	Torrente Carapelle	VP_CA02	NON CONFORME	Materiali in sospensione	HOCI,NH ₃ ,NH ₄ ,BOD ₅
2-LE	Laghi Alimini - Fontanelle	VP_AL01	NON CONFORME		BOD ₅
1-TA	Sorgente Chidro	VP_SC01	NON CONFORME		BOD ₅ ,NH ₄
2-TA	Fiume Galeso	VP_FG01	NON CONFORME		BOD ₅ , HOCl, NH ₄
3-TA	Fiume Lenne	VP_LN01	NON CONFORME		BOD ₅ , NH ₃ ,NH ₄
4-TA	Fiume Lato	VP FL01	NON CONFORME		BOD ₅ , HOCl, NH ₄

NH4: ammoniaca totale; NH₃: ammoniaca non ionizzata; HOCl: cloro residuo totale; BOD₅: richiesta biochimica di ossigeno; O₂: ossigeno

Legenda:

C *: proposta di conformità subordinata a deroga di alcuni parametri come previsto dall'art. 86 del D.Lgs. 152/2006 a causa di circostanze meteorologiche eccezionali o speciali condizioni geografiche.